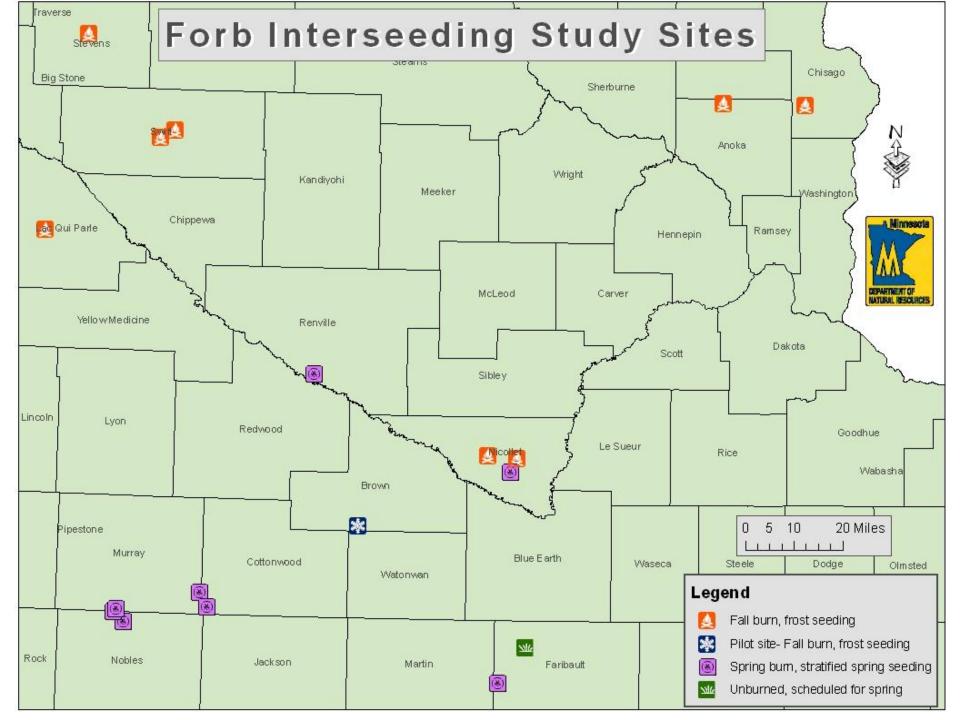


Justification

- Managers want more information about maintaining diversity in grasslands
- Forb rich grasslands provide food and structure for grassland birds
- Many older MNDNR grassland plantings didn't include forbs
- Techniques for effectively establishing forbs would be valuable to managers

Objectives


- Investigate effects of mowing and herbicide treatments on the establishment and persistence of forbs interseeded into established native grasslands
- Investigate effects of the various treatments on insect community abundance

Study Design

- Uniform native grass stands with little or no forbs
- Excludes wetlands
- Must be >10 acres
- 1 pilot site in 1st yr
- 16 study sites in 2nd yr

Site Preparation

- Pilot season on 1 site began in Fall 2008.
- 8 sites were burned in Fall
 2009
 - Broadcast frost seeded in Winter 09-10
- 8 sites were burned Spring
 2010
 - Seed was cold/moist stratified and interseeded after burn
- Treatments began Summer 2010

Treatments

- Mow: 4-6 in. <u>ONCE</u> when veg. is 10-12 in. tall
- Mow: 4-6 in. TWICE when veg. is 10-12 in. tall
- Grass herbicide (Clethodim)
 @ 8 oz/acre in late Mayearly June
- Grass herbicide (Clethodim)
 @ 16 oz/acre in late Mayearly June

Study site design

Purple line = WMA

Red line = site (or block)

Black line = plots (1 of 4 treatments or control)

Yellow lines = transects

Blue circles = sampling frame

Study Sites

- Each site received all treatments to account for variability between sites
- Each treatment was replicated twice at each site.

Seed Mix of 30 forb species

Common Name	Scientific Name
Leadplant	Amorpha canescens
Black eyed Susan	Rudbeckia hirta
Maximilian Sunflower	Helianthus maximilianii
Yellow Coneflower	Ratibida pinnata
Golden Alexanders	Zizia aurea
Sky Blue Aster	Aster oolentangiensis
Canada Milk Vetch	Astragalus canadensis
Prairie Cinquefoil	Potentilla arguta
White Prairie Clover	Dalea candida
Purple Prairie Clover	Dalea purpurea
False Sunflower	Heliopsis helianthoides
Alumroot	Heuchera richardsonii
N. L. Purple Coneflower	Echinacea angustifolia
Prairie Blazingstar	Liatris pycnostachya
Common Milkweed	Asclepias syriaca
Blue Vervain	Verbena hastata
Rough Blazingstar	Liatris aspera
New England Aster	Aster novae-angliae
Prairie Onion	Allium stellatum
Hoary Vervain	Verbena stricta
Heath Aster	Aster ericoides
Stiff Goldenrod	Oligoneuron rigidum
Culver's Root	Veronicastrum virginicum
Showy Tick Trefoil	Desmodium canadense
Wild Bergamot	Monarda fistulosa
Prairie Coreopsis	Coreopsis palmata
Partridge Pea	Chamaechrista fasciculata
Closed Bottle Gentain	Gentiana andrewsii
Heart Leaf G. Alexander	Zizia aptera
Brown Fox sedge	Carex vulpinoidea

Vegetation Sampling

Baseline Data collected Prior to treatments:

- V.O.R. (Robel et al. 1949)
- Litter depth
- % cover (Daubenmire 1959)
- Presence/absence

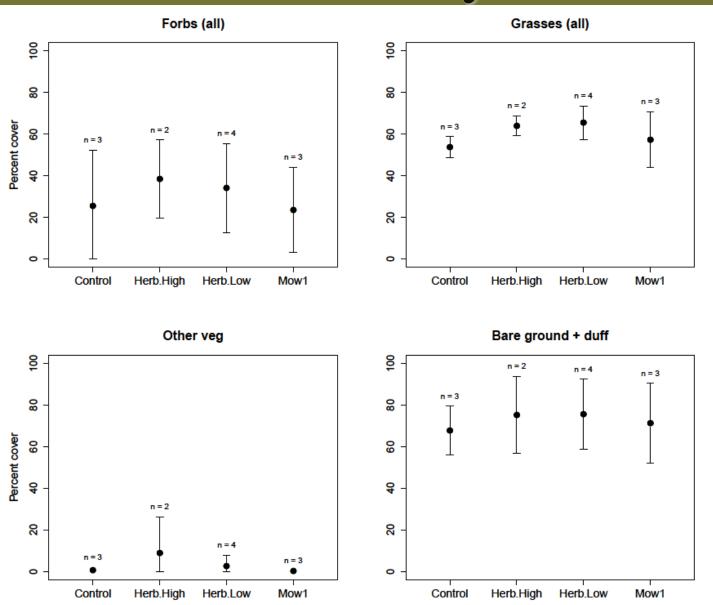
Preliminary Findings

Control No treatment

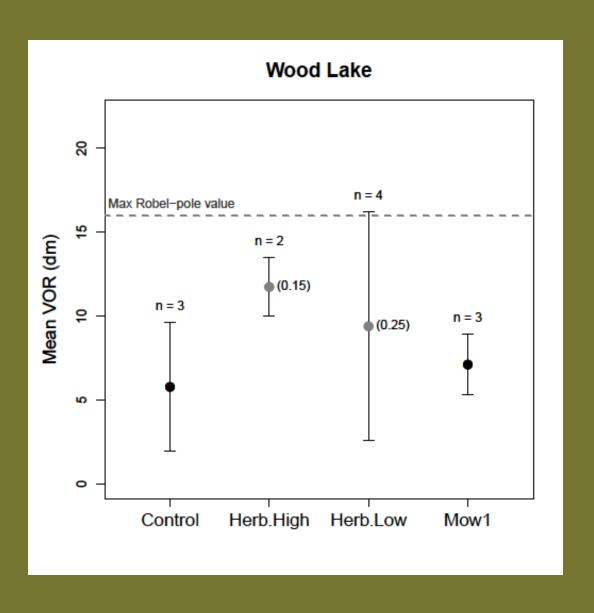
Herbicide High rate

Preliminary Findings

Preliminary Findings


Results vary by site.

- Herbicide rates did suppress grass at most sites, especially those with sandy/poor soils.
- Herbicide treatments did not appear to suppress grass at some sites.
- Could be related to soils or cultivars
- Higher rates may be needed with richer soils.


Mean VOR - 5 Study Sites

Pilot Site Early Data

Mean VOR - Pilot Site

Lessons Learned

- Take care of your weeds before you interseed!
- As vegetation gets taller, mean VORs get more variable.
 - Will add additional sample points next year.
- Lots of site to site variation- need to have all treatments replicated at all sites.
- Use of grass selective herbicide will set native grasses back but not kill them.
 - Applications in the control of RCG and use in seed production plots.
- The treatment plots created a mosaic of habitat for grassland nesting birds.

Beaver Falls Site Visit

Vegetation survey was conducted

Aug 2009

- Canada/Giantgoldenrod presentin 77.5% of plots
- Switchgrass present75% of plots
- Sweet clover present in 72.5% of plots
- Swamp aster presentin 25% of plots

Smooth brome present in 52.5% of plots

Beaver Falls Site Visit

Spring 2010 prior to study

Burned April 2010

Post burn April 2010

Broadcast seeding April 2010

Special Thanks

- Biometricians: John Fieberg & John Giudice
- Interns: Jeff Swanson & Charity Kern
- Funding: MNDNR
- Labor: MNDNR & USFWS area wildlife managers, Jeff Zajac
- Randy Schindle, Genevive Brand, Kurt Haroldson, Dick Kimmel, & Eric Dunton

